1-1- پیشگفتار
از دهه گذشته تا به امروز پلیمر مسلح شده به الیاف[1] FRP به عنوان جایگزینی مناسب برای فولادِ مسلحکنندهی بتن در صنعت ساخت پذیرفته شده است. در اوایل 1990 میلادی زوال سازههای زیر بناییِ آمریکا به خصوص پلها به علت خوردگی[2] فولاد به کار رفته در آن ها مهندسان سازه را ملزم به پیدا کردن مادهی مسلحکنندهی دیگری در بتن کرد. استفاده از میلگرد FRP به عنوان جایگزین برای فولاد مسلحکنندهی بتن راهحلی قابل قبول برای حل این مشکل بود، زیرا به علت دارا بودن ویژگیهای بارزی مانند مقاومت بالا در برابر خوردگی و خستگی[3]، میرایی مناسب[4] در بارهای دینامیکی، نسبت مقاومت به وزن بسیار عالی و خنثی بودن مغناطیسی[5] برای مصارف سازهای بسیار مناسب بوده و هست[1].
امروزه مزیّتهای بتن مسلحشده با FRP[6] (FRP-RC)، بر کسی پوشیده نیست. سازههای عمرانی از جنس بتن مسلحشده با فولاد[7]، دارای حساسیتی بالا به عوامل طبیعی میباشند که این عوامل باعث شروع یک فرایند الکتروشیمیایی در فولاد شده و نتیجهی آن خوردگی فولاد است. برای حفظ عمر مفید این سازهها نگهداری و تعمیرات زیادی لازم است. به عنوان مثال از مهمترین دلایل خرابی عرشهی پلها میتوان به در معرض مستقیم بودن با محیط، ضد یخهای شیمیایی و افزایش حجم ترافیکی اشاره کرد. استفاده از میلگرد FRP به عنوان مسلحکنندهی عرشهی پلها و شاهتیرها پتانسیل بالایی را برای افزایش عمر سازه، صرفهجویی اقتصادی و پاکی محیطزیست به ارمغان آورده است[2].
همانطور که از نام FRP پیداست از الیاف مسلحکننده[8]، رزین[9] و مواد افزودنی[10] ساخته شده است. الیاف مسلحکننده دارای مقاومت و سختی بسیار بالا و عضو اصلی در تحمل بار میباشد. رزین مقاومت فشاری خوبی را از خود نشان میدهد و وظیفهی اصلی آن ایجاد زمینهای[11] به منظور یکپارچهسازی الیافها میباشد. افزودنیها به ارتقای خواص مکانیکی و فیزیکی FRP برای کارایی بهتر کمک میکنند[4]. انواع بسیار متداول الیاف مورد استفاده در صنعت ساختمان شیشه[12] G، کربن[13] C و
آرامید[14] A میباشد. GFRP [15] دارای کمترین مقاومت، سختی و CFRP [16] دارای بالاترین پایداری، سختی، و مقاومت میباشد. AFRP[17] دارای پایداری و مقاومت بهتری نسبت به GFRP میباشد، ولی به علت قیمت بالا در صنعت ساختمان بسیار کم استفاده میشود.
بتن مسلحشده با FRP در اشکال متنوعی برای کاراییهای مختلف وجود دارد. برای ساخت سازههای جدید میتوان از FRP در حالتهای مختلفی مانند میلگرد[18]، شبکه[19] و تاندونهای پیشتنیده[20] استفاده کرد.
/%d8%af%d8%a7%d9%86%d9%84%d9%88%d8%af-%d8%b3%d9%85%db%8c%d9%86%d8%a7%d8%b1-%da%a9%d8%a7%d8%b1%d8%b4%d9%86%d8%a7%d8%b3%db%8c-%d8%a7%d8%b1%d8%b4%d8%af%d8%a7%d8%b1%d8%b2%db%8c%d8%a7%d8%a8%db%8c-%d8%a7/
تمرکز این تحقیق بر روی استفاده از میلگردهای FRP به عنوان عضو مسلحکننده در بتن میباشد. در این مطالعه از اطلاعات کارخانههای سازندهی FRP برای ارزیابی احتمالاتی[21] سازههای FRP-RC استفاده و در انتهای آن پیشنهاداتی برای بهبود ضرایب اطمینان موجود در آییننامهی ACI440 ارائه شده است.
تاکنون بیشتر تحقیقات انجام شده با موضوعیت استفاده از میلگردهای FRP به عنوان مسلحکنندهی بتن، با روشهای قطعی که عدم قطعیتِ ذاتیِ همراه با طراحی را نادیده میگیرند، صورت گرفته است. به دلیل وجود چنین نقصی تکنیکهای براساس قابلیت اعتماد سازهها که مناسب برای لحاظ عدم قطعیت در طراحی میباشند در این تحقیق انتخاب شدهاند.
پیشرفت شاخهی قابلیت اعتماد در چهار دهه گذشته بستری منطقی را برای آییننامههای طراحی آماده کرده است، زیرا که هدف اصلی در آنالیز قابلیت اعتماد تعیین کردن سطح ایمنی سازهها با در نظر گرفتن عدم قطعیت همراه با پارامترهای متناظرِ مقاومت و بارها میباشد. این تحقیق بر روی آنالیز قابلیت اعتماد رفتار خمش تیرهای FRP-RC تمرکز کرده است.
مقاومت سازه باید به طور موثری از تاثیرات بارهای وارد بر آن بیشتر باشد. پارامترهای تعیین کنندهی مقاومت و بار از نوع متغیرهای تصادفی و شامل چندین درجه عدم قطعیت میباشند. به همین دلیل ایمنی را معمولا در پارامتری به نام اندیس قابلیت اعتماد که از آنالیز قابلیت اعتماد بدست میآید و بر اساس تئوری احتمالات میباشد، خلاصه میکنند. برای انجام یک آنالیز قابلیت اعتماد نیاز است مدلهای مقاومت و بار مشخص شوند و پارامترهای احتمالاتی آنها مانند میانگین و انحراف معیار تعیین شده باشند.
این تحقیق یک ارزیابی احتمالاتی را با روش مونت کارلو برای اعضای FRP-RC به ثمر میرساند و پیشنهاداتی را برای اصلاح و بازبینی روابط ارائه شده در ACI440 ارائه میکند.
[1] Fiber Reinforced Polymer (FRP)
[2] Corrosion
[3] Fatigue
[4] Damping resistance
[5] Electromagnetic transparency
[6] FRP Reinforced Concrete (FRP-RC)
[7] Steel Reinforced Concrete (Steel RC)
[8] Fiber
[9] Resin
[10] Additives
[11] Matrix
[12] Glass
[13] Carbon
[14] Aramid
[15] Glass Fiber Reinforced Polymer
[16] Carbon Fiber Reinforced Polymer
[17] Aramid Fiber Reinforced Polymer
[18] Bar
[19] Grid
[20] Prestressing tendon
[21] Probabilistic assessment
فرم در حال بارگذاری ...